穿越平凡·追求卓越
搜索

【行业】磷酸锰铁锂:锰将出征,后来居上(49页)

LMFP发展契机:现有橄榄石结构磷酸盐正极材料存在应用瓶颈。磷酸盐基正极材料LiMPO4属于聚阴离子型正极材料,为正交晶系呈橄榄石结构,M可由Fe、Mn、Co、Ni等元素组成。其中,磷酸钴锂(4.8V)和磷酸镍锂(5.2V)充放电平台过高,已超过传统电解液所能承受的最大电压平台(4.5V),难以被商业化应用,而磷酸锰锂LMP和磷酸铁锂LFP可适配现有电解液体系,具备商业应用基础。 1)磷酸铁锂LiFePO4:具备易合成、高安全性、长寿命和低成本等优势,但由于Fe3+/Fe2+相对于Li+/Li的电极电势仅为3.4V,材料能量密度较低,虽目前受益于各种物理封装技术的革新,短板有所弥补,但LFP材料能量密度已接近理论值“天花板”。 2)磷酸锰锂LiMnPO4:相较于LFP,比容量接近,但LMP相对于Li+/Li的电极电势为4.1V,高于LFP(3.4V)。但LMP材料禁带宽度高达2eV,电子跃迁能隙较大,电导率和锂离子扩散系数极低(低于LFP两个数量级),电化学性能极差,近似“绝缘体“。 3)由于LiMnPO4和LFP有相同结构,Fe和Mn可以任意比互溶形成固溶体,当Mn元素替代LFP中部分Fe时,即为磷酸锰铁锂。 磷酸锰铁锂:兼顾高能量密度与高安全性。LMFP可利用Mn和Fe的协同效应,结合磷酸铁锂(稳定的电化学性能)和磷酸锰铁锂(高电压)优势,兼顾高能量密度与高安全性,同时其电压平台(4.1V)可适配常规电解液,这为切入市场提供契机。第一,往LFP中掺Mn,有以下作用:1)Mn2+的半径略大于Fe2+的半径,往LFP进行锰元素的掺入,可扩宽锂离子扩散通道,提升锂离子扩散系数;2)Mn掺杂可使材料晶粒细化且增大LFP晶胞体积,利于锂的脱嵌;3)降低电荷转移阻抗,降低材料极化,提高材料倍率性能;4)提升材料的低温性能;5)电池材料可逆性增加,放电平台增加。同时,铁的电子跃迁能隙小于锰,可增加材料电导率。 第二,LMFP材料理论能量密度比LFP高20%。由质量能量密度(Wh/kg)=电池克容量(mAh/g)× 工作电压 可知,在克容量相近的条件下,电压越大,质量能量密度越大。由此,可计算出LMFP理论质量能量密度为697 Wh/kg,高于LFP20%。 磷酸锰铁锂:材料存在三大痛点。 LMFP虽较LFP具备更高能量密度、更高工作电压,但存在以下三个痛点: 痛点一:电子电导率低、锂离子扩散速率较低。从与其他材料性能对比情况可知,LMFP电导率仅10−13S/cm、锂离子扩散 速率为10−15??2/S;分别为LFP的1/10倍和1/10000倍。相比于LFP0.3 eV 的跃迁能隙,电子在LMFP中跃迁能隙高达2eV,基本属于绝缘体,导致其电子电导率及离子迁移率低。痛点二:压实密度较小,影响能量密度发挥。从与三元正极材料粒度分布比较情况可知,LMFP材料D50粒度仅为三元粒度的一半不到,材料颗粒较小,导致压实密度较低,进而影响整体材料的能量密度表现。同时,一次粒径过小会导致颗粒比表过高,制备电池极片时不得不大量使用粘结剂,导致成本增加和极片主含量降低。